Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.

نویسندگان

  • B Pogson
  • K A McDonald
  • M Truong
  • G Britton
  • D DellaPenna
چکیده

Lutein, a dihydroxy beta, epsilon-carotenoid, is the predominant carotenoid in photosynthetic plant tissue and plays a critical role in light-harvesting complex assembly and function. To further understand lutein synthesis and function, we isolated four lutein-deficient mutants of Arabidopsis that define two loci, lut1 and lut2 (for lutein deficient). These loci are required for lutein biosynthesis but not for the biosynthesis of beta, beta-carotenoids. The lut1 mutations are recessive, accumulate high levels of zeinoxanthin, which is the immediate precursor of lutein, and define lut1 as a disruption in epsilon ring hydroxylation. The lut2 mutations are semidominant, and their biochemical phenotype is consistent with a disruption of epsilon ring cyclization. The lut2 locus cosegregates with the recently isolated epsilon cyclase gene, thus, providing additional evidence that the lut2 alleles are mutations in the epsilon cyclase gene. It appears likely that the epsilon cyclase is a key step in regulating lutein levels and the ratio of lutein to beta,beta-carotenoids. Surprisingly, despite the absence of lutein, neither the lut1 nor lut2 mutation causes a visible deleterious phenotype or altered chlorophyll content, but both mutants have significantly higher levels of beta, beta-carotenoids. In particular, there is a stable increase in the xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) in both lut1 and lut2 mutants as well as an increase in zeinoxanthin in lut1 and beta-carotene in lut2. The accumulation of specific carotenoids is discussed as it pertains to the regulation of carotenoid biosynthesis and incorporation into the photosynthetic apparatus. Presumably, particular beta, beta-carotenoids are able to compensate functionally and structurally for lutein in the photosystems of Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8.

Carotenoid pigments are critical for plant survival, and carotenoid composition is tuned to the developmental stage, tissue, and to environmental stimuli. We report the cloning of the CAROTENOID CHLOROPLAST REGULATORY1 (CCR1) gene. The ccr1 mutant has increased shoot branching and altered carotenoid composition, namely, reduced lutein in leaves and accumulation of cis-carotenes in dark-grown se...

متن کامل

Identification of Plastoglobules as a Site of Carotenoid Cleavage

Carotenoids play an essential role in light harvesting and protection from excess light. During chloroplast senescence carotenoids are released from their binding proteins and are eventually metabolized. Carotenoid cleavage dioxygenase 4 (CCD4) is involved in carotenoid breakdown in senescing leaf and desiccating seed, and is part of the proteome of plastoglobules (PG), which are thylakoid-asso...

متن کامل

Carotenoid synthesis and function in plants: Insights from mutant studies in Arabidopsis*

From a molecular and genetic perspective, the decade of the 1990s was truly unparalleled in the study of carotenoids. A combination of new technologies and approaches allowed the isolation of bacterial carotenoid biosynthetic genes and the subsequent isolation of higher plant homologs based on colour complementation in Escherichia coli. These genes provided a basis for molecular and transgenic ...

متن کامل

Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis.

Carotenoids are essential photoprotective and antioxidant pigments synthesized by all photosynthetic organisms. Most carotenoid biosynthetic enzymes were thought to have evolved independently in bacteria and plants. For example, in bacteria, a single enzyme (CrtI) catalyzes the four desaturations leading from the colorless compound phytoene to the red compound lycopene, whereas plants require t...

متن کامل

Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress

Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 1996